Phishing — Baiting the Hook

Opret en gratis Insights-profil hos Ingeniøren og få direkte og nem adgang til whitepapers, webinarer og e-magasiner.
Når du tilgår dette materiale, accepterer du, at sponsoren af materialet kan kontakte dig på din oplyste e-mailadresse og telefonnummer med markedsføring af ydelser, der relaterer sig til emnet, som materialet omhandler.

Almost any data scientist will tell you that a significant part of their time is spent on cleaning data to prepare it for analysis. Whether we’re talking about log files, event histories, or any other type of data, issues always need to be resolved before the work can begin. In some cases, it’s missing data. In others it’s outliers: events that skew the data or were misreported. Or maybe multiple data sets need to be brought together to form the data you want to analyze. No matter the cause, it takes time and work to ensure the most accurate data is available.

Data science is hard, but it’s worth the effort. Each data set can be manipulated to make the most out its strengths and compensate for its weaknesses. After that, we can prepare the best analysis possible to tell you a story about the attacks we see.