Hvad betyder det egentligt, at et tog ankommer kl. 7? Det er det første spørgsmål, som Albert Einstein efter nogle generelle indledende bemærkninger, stiller og besvarer i sin 31 sider lange artikel om den specielle relativitetsteori »Zur Elektrodynamik bewegter Körper«.
Einsteins svar er, at det betyder noget i denne stil: »At den lille viser på mit ur peger på 7, samtidigt med at toget ankommer«.
Pointen er, at tid er forbundet med hændelser, der finder sted samtidigt. Der er således ikke noget problem i at bestemme tiden, når ur og hændelse er på samme sted. Problemet opstår, når man skal finde tiden for noget, der finder sted langt væk fra uret. Eller når vi skal synkronisere ure, som ligger langt fra hinanden.
Den eneste logiske måde for Einstein at synkronisere tiden mellem to ure er at sende et lyssignal fra ur A til ur B, hvor det straks reflekteres tilbage til A.
Hvis ur A viser tiden tA, når lyssignalet udsendes, og t'A, når lyssignalet kommer tilbage, og ur B viser tiden tB, når lyset reflekteres, så er de to ure synkrone, hvis tB-tA = t'A-tB.
Albert Einsteins analyse går nu ud fra to postulater.
Det første postulat er, at lovene for elektrodynamik som for mekanik skal være ens i de såkaldte inertialsystemer. Det er det, Einstein kalder relativitetsprincippet. Et inertialsystem er ikke påvirket af ydre kræfter og er derved enten i hvile eller i en jævn bevægelse. Dette postulat er næsten selvindlysende, da der ikke er grund til, at det skulle være anderledes.
Det andet postulat er, at lys i det tomme rum altid udbreder sig med samme hastighed uanset det lysudsendende legeme er i hvile eller i bevægelse. Det er det nye og afgørende postulat. Og det har kort fortalt den virkning, at synkroniseringen af ure bliver en meget mere kompliceret sag, end man umiddelbart forestiller sig.
Ud fra princippet om synkronisering af ure med lyssignaler, kunne Einstein på enkel måde vise, at to ure, som for en person ville være synkroniseret, når både ure og person var i hvile, ikke ville være synkroniseret for en person, som var i relativ bevægelse til disse ure. Om to hændelser sker samtidigt eller ej, vil derfor opfattes forskelligt af forskellige personer. Og begge har lige ret i deres påstand, for der findes ikke noget inertialsystem, der har præference i forhold til et andet.
Følgevirkningerne er bl.a., at ure i bevægelse set fra en stationær iagttager synes at gå langsommere, og at legemer i bevægelse set fra en stationær iagttager synes kortere end legemer i hvile. Er man interesseret i en dybere forklaring, er matematikken uhyre enkel og velbeskrevet i mange introduktionsbøger til den specielle relativitetsteori.
I modsætning til, hvad man ofte hører, påstår Einstein ikke, at lysets hastighed i vakuum er den højest tænkelige. Han påstår kun, at den er konstant. Men det følger heraf (igen med brug af simpel matematik), at legemer med en hastighed mindre end lysets hastighed i vakuum aldrig kan bringes til en hastighed på lysets hastighed eller derudover.
I princippet kan der dog godt findes partikler med hastigheder over lysets hastighed, de kan til gengæld ikke nedbremses under lysets hastighed. Sådanne partikler har allerede et navn, de kaldes tachyoner – om de eksisterer er tvivlsomt, men det kan i princippet ikke udelukkes.
Tvillingeparadokset
Tvillingeparadokset er et af de mest kendte »paradokser« i relativitetsteorien.
Den ene af to tvillinger sendes af sted i en rumraket på en mangeårig rejse i rummet med en høj hastighed. Set fra Jorden går tiden langsommere i rumraketten, og rakettvillingen vil derfor være yngre end jordtvillingen, når han vender tilbage. Set fra raketten er situationen omvendt. Raketten er i hvile og Jorden i bevægelse, så tiden på Jorden går langsommere end i raketten, og derfor vil jord-tvillingen være yngst, når de to tvillinger mødes igen. Begge kan umuligt være yngst – vi har tilsyneladende et paradoks.
I virkeligheden er paradokset ikke et rigtigt paradoks. For den specielle relativitetsteori gælder kun for inertialsystemer. For at raket-tvillingen kan komme op i fart, må raketten accelereres. Og for at raketten kan vende om og komme tilbage til Jorden, må den udsættes for en ny acceleration. Disse forhold er ikke omfattet af den specielle relativitetsteori.
Einstein gik i 1907 i gang med at udvikle en generel relativitetsteori, der skulle håndtere disse størrelser. Nøglekonceptet er, at der i princippet ikke er en forskel på en accelera-ton og en tyngdekraft, men det skulle blive en lang og kompliceret vej. For det første var de fysiske problemstillinger af en helt anden kaliber end i den specielle relativitetsteori, for det andet viste det sig, at den matematiske behandling skulle op på et højere niveau. Hvor matematikken i den specielle relativitetsteori kan forstås af enhver gymnasieelev, måtte selv Einstein give op for matematikken i den generelle relativitetsteori og hente hjælp fra sin gamle studiekammerat Marcel Grossmann, der var matematikprofessor i Zürich.
Albert Einstein kunne så endelig i 1916 i Annalen der Physik offentliggøre sin 54 sider lange artikel »Die Grundlage der allgemeinen Relativitätstheorie«.
Newton opfattede gravitation som en kraft, der øjeblikkeligt virker over lange afstande. Einstein tillage gravitation en egenskab ved rummet og tiden. Einstein viste eksempelvis, hvordan en stjerne eller et andet massivt objekt krummer den firedimensionale rumtid omkring sig. Det var en tanke så fjern for enhver umiddelbar forestilling, at mange forskere er enige om, at hvis ikke Einstein havde formuleret sin teori i 1915/16, ville langt senere målinger af eksempelvis pulsarer, der bekræfter disse forudsigelser, være kommet som et chok for videnskaben.
Tvillingeparadokset kunne nu behandles med den generelle relativitetsteori. Og resultatet er entydigt: rakettvillingen er yngst på grund af accelerationen.
Marcel Grossmann hjalp lidt med matematikken, men den generelle relativitetsteori er Albert Einsteins soloværk. Den vil for altid stå som en af de allerstørste enkeltbedrifter i videnskabens historie. u
